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Mapping and selection of downy
mildew resistance in spinach cv.
whale by low coverage whole
genome sequencing

Gehendra Bhattarai1*, Dotun Olaoye1, Beiquan Mou2*,
James C. Correll3* and Ainong Shi1*

1Department of Horticulture, University of Arkansas, Fayetteville, AR, United States,
2Crop Improvement and Protection Research Unit, United States Department of Agriculture,
Agricultural Research Service, Salinas, CA, United States, 3Department of Plant Pathology, University
of Arkansas, Fayetteville, AR, United States
Spinach (Spinacia oleracea) is a popular leafy vegetable crop and commercial

production is centered in California and Arizona in the US. The oomycete

Peronospora effusa causes the most important disease in spinach, downy

mildew. A total of nineteen races of P. effusa are known, with more than 15

documented in the last three decades, and the regular emergence of new races

is continually overcoming the genetic resistance to the pathogen. This study

aimed to finely map the downy mildew resistance locus RPF3 in spinach,

identify single nucleotide polymorphism (SNP) markers associated with the

resistance, refine the candidate genes responsible for the resistance, and

evaluate the prediction performance using multiple machine learning

genomic prediction (GP) methods. Segregating progeny population

developed from a cross of resistant cultivar Whale and susceptible cultivar

Viroflay to race 5 of P. effusa was inoculated under greenhouse conditions to

determine downy mildew disease response across the panel. The progeny

panel and the parents were resequenced at low coverage (1x) to identify

genome wide SNP markers. Association analysis was performed using

disease response phenotype data and SNP markers in TASSEL, GAPIT, and

GENESIS programs and mapped the race 5 resistance loci (RPF3) to 1.25 and

2.73 Mb of Monoe-Viroflay chromosome 3 with the associated SNP in the 1.25

Mb region was 0.9 Kb from the NBS-LRR gene SOV3g001250. The RPF3 locus

in the 1.22-1.23 Mb region of Sp75 chromosome 3 is 2.41-3.65 Kb from the

gene Spo12821 annotated as NBS-LRR disease resistance protein. This study

extended our understanding of the genetic basis of downymildew resistance in

spinach cultivar Whale and mapped the RPF3 resistance loci close to the NBS-

LRR gene providing a target to pursue functional validation. Three SNP markers

efficiently selected resistance based on multiple genomic selection (GS)

models. The results from this study have added new genomic resources,

generated an informed basis of the RPF3 locus resistant to spinach downy
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mildew pathogen, and developed markers and prediction methods to select

resistant lines.
KEYWORDS

spinach, downy mildew, oomycete, disease resistance, mapping, GWAS, candidate
gene, breeding
Introduction

Spinach (Spinacia oleracea L.) is an important cool-season

leafy vegetable crop. The US annually cultivates spinach on

58,000 acres with a value of 500 million dollars (USDA NASS,

2020) and ranks second in production after China. More than

90% of spinach in the US is produced during the mild-cool

season in California and Arizona, providing a year-round fresh

supply. Spinach is a diploid crop with six pairs of chromosomes

(2n = 2x = 12) and is primarily a dioecious crop comprising

separate male and female plants. Spinach is nutritious and an

excellent source of health-promoting compounds and nutrients

(Morelock and Correll, 2007).

Downy mildew, caused by the obligate oomycete

Peronospora effusa, is the most economically important disease

of spinach, making the produce unmarketable after infection.

Breeding for resistance to downy mildew pathogen is the

primary objective of all spinach breeding programs (Morelock

and Correll, 2007; Bhattarai and Shi, 2021). Nineteen unique

races of P. effusa have been documented (Feng et al., 2014; Feng

et al., 2018b; Plantum, 2021) in spinach, of which sixteen were

reported in the last three decades. New races of P. effusa have

continually overcome newly deployed genetic resistance making

downy mildew a major challenge for sustainable spinach

production. Significant increase in the production area in

recent decades and planting in a higher density, year-round

production, and use of resistant cultivars with narrow genetic

backgrounds increase selection pressure, and increased organic

production provides favors P. effusa growth and multiplication,

and all these phenomena promote emergengence of new

pathogen races. Recent studies have reported asexual genetic

variation, the presence of opposite mating types among

California isolates (Dhillon et al., 2020), and sexual

recombination within the P. effusa population (Lyon et al.,

2016; Kandel et al., 2019), all of which might contribute to the

emergence of new races.

Most spinach cultivars resistant to downy mildew were bred

using single-gene resistance against the various races of P. effusa.

Different RPF loci (Resistance to Peronospora farinosa) have

been hypothesized to provide resistance to races of P. effusa

(Correll et al., 2011). Commercial hybrid cultivars are developed

using a single or combination of a few RPF genes from two
02
parents. Genetic investigation and characterization of the

resistance sources and identifying molecular markers linked to

the resistant genes will facilitate R-gene pyramiding and

breeding new resistant cultivars. The RPF1 locus was mapped

to chromosome 3 and a codominant marker DM1 was identified

at 1.7 cM from the RPF1 locus (Irish et al., 2008). Later, the P.

effusa resistance loci RPF1, RPF2, and RPF3 were mapped to a

1.5 Mb region of chromosome 3 (Feng et al., 2015; Feng et al.,

2018b), RPF1 locus was further narrowed to a 0.89 Mb region

between 0.34-1.23 Mb (She et al., 2018), and candidate genes

predicted in providing resistance to P. effusa based on Sp75

assembly were reported. The P. effusa resistance region was

finely mapped using genotyping by sequencing (GBS) based SNP

markers in segregating populations inoculated with P. effusa race

13 to 0.84 Mb (Bhattarai et al., 2020b) and race 16 to 0.57 Mb

(Bhattarai et al., 2021) region of Sp75 assembly. Recently, the

resistance to downy mildew pathogen from the germplasm panel

was mapped to the 0.3-1.5 Mb region of the Monoe-Viroflay

assembly, containing six NBS-LRR proteins encoding genes (Cai

et al., 2021). However, the downy mildew disease resistance loci

in spinach have only been molecularly tagged, DNA markers

have been developed, but the resistance regulating genes have

not been isolated, and functions are still unknown.

Demand for spinach in the US is continually increasing and

organic production comprises around 50% of the total

production. The utilization of host genetic resistance in

developing new resistant cultivars is the most promising

disease management approach in crops, particularly in organic

production, where the use of resistant cultivars is the only viable

disease management option. Identifying additional resistance

sources against races of P. effusa and expanding the

understanding of the mechanism of genetic resistance could

provide new options and effective molecular selection tools to

improve the durability of resistance. Genetic mapping of the

resistance sources and identification of gene-based markers are

expected to facilitate R-gene pyramiding. In addition to the

major R gene-based disease resistance strategy, the identification

of susceptibility genes (S-genes) are being approached that may

open alternative avenues to develop resistant cultivars by loss-of-

function of the S-genes (Bhattarai et al., 2020b; Ribera et al.,

2020). The use of the susceptibility gene in providing effective

resistance are reported and established in other crop pathogen
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system (Bai et al., 2008; Pavan et al., 2011; Pessina et al., 2016;

Wang et al., 2016a) and may be effective in providing durable

and non-race-specific resistance in spinach. Regular overcoming

of resistance genes by new races has urged a better

understanding of the molecular host-pathogen battle at the

molecular level to support holistic disease management

options and using host genetic resistance.

Decreasing sequencing and genotyping costs in the past

decade allowed the adoption of quantitative trait loci (QTL )

mapping and genome wide association study (GWAS) for small

breeding programs to identify, map, and characterizes genomic

regions controlling the phenotypic expression. Genetic

resistance to downy mildew pathogens has been extensively

studied in many crops (Bachlava et al., 2011; Parra et al., 2016;

Wang et al., 2016b; Pyne et al., 2017). Biparental QTL mapping

requires the development of progeny population segregating for

the trait to detect QTLs, while GWAS allows mapping the trait

and identification of genetic variants associated with the trait in

diverse germplasm or multi-parent progeny population. Seevral

traits in plants and animals have been mapped using the GWAS

approach, including resistance to downy mildew pathogen in

spinach (Bhattarai et al., 2020b; Bhattarai et al., 2021; Cai et al.,

2021). Genomic selection (GS) predicts the breeding value of

complex traits of the test population by assessing the effect of

genome wide markers, facilitating the selection of superior

genotypes without phenotyping and field tests, and

accelerating breeding cycles (Meuwissen et al., 2001; Heffner

et al., 2009; Bernardo, 2010; Jannink et al., 2010). In the past two

decades, GS has been reported in several horticultural and

agronomic crops for qualitative and quantitative traits in

biparental, multiparent, and natural populations (Lorenzana

and Bernardo, 2009; Heffner et al., 2011; Gezan et al., 2017;

Poudel et al., 2019; Islam et al., 2020; Sehgal et al., 2020),

including resistance to downy mildew and white rust pathogen

in spinach (Bhattarai et al., 2022; Shi et al., 2022). Several

parametric (rrBLUP-ridge regression BLUP, Bayes A, Bayes B,

Bayesian LASSO) and nonparametric (RKHS-Reproducing

Kernel Hilbert Space, RF-Random Forest, SVM-Support

Vector Machine) models are optimized to increase prediction

accuracy in plant and animal breeding programs. The

development of reduced representation sequencing, low

coverage resequencing, and targeted sequencing in the past

decade allowed generation of genotypic datasets at a

reasonable cost for plant breeding programs offering options

to perform GWAS and GS to improve selection methods and

increase selection accuracy. We employed the low coverage

whole genome resequencing approach to sequence the

population and get genotype data in this study, and this

approach are described for many other crops in trait

dissection in diverse and bi-parental populations (Gao et al.,

2013; Bayer et al., 2015; Hu et al., 2018; Malmberg et al., 2018).

The spinach cultivar Whale is known to contain the RPF3

allele and provide resistance to P. effusa race 1, 3, 5, 8-9, 11-
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12,14, 16, and 19 (Feng et al., 2014; Feng et al., 2018b; Bhattarai

et al., 2020a; Plantum, 2021), and is widely used as a differential

set to discriminate the races and isolates of downy mildew

pathogen. This study used the GWAS method to finely map

genomic regions controlling resistance to downy mildew

pathogen race 5 from an F2 population segregating for RPF3

locus from the differential cultivar Whale. The specific objectives

of this study were to identify the SNP markers associated with

the resistance to the downy mildew pathogen, identify and refine

the candidate genes involved in resistance, and evaluate machine

learning tools in predicting resistance.
Materials and methods

Plant materials and populations

The cultivar Whale contains RPF3 locus and is resistant to

race 5 of P. effusa. A segregating F2 population was developed by

crossing Whale and Virfolay (susceptible cultivar) and a cross

between resultant F1 males and female plants. Seeds were

harvested from each of the female plants representing a

progeny population. Initially, 10-20 F2 seeds and parent lines

were evaluated for disease response upon inoculation with P.

effusa race 5. After an initial screening, two progeny populations

(VW #10 and VW #3), comprising 137 and 251 seedlings, were

inoculated with P. effusa race 5 at the Rosen Alternative Pest

Control Center, University of Arkansas. Parental cultivars and

the differentials, including NIL1, NIL3, and Viroflay, were

included in the disease screening as controls. Seeds were sown

in 25 x 50-cm plastic trays filled with potting soil (Sun Gro

Horticulture, Canada). Each plant tray contained ten rows, and

10-15 seeds per row were planted. After germination, 6-8 plants

were kept per row and were labeled using a plant tag. Plants were

grown in the greenhouse (25°C) for two weeks, watered daily,

and fertilized weekly using Miracle-Gro® All Purpose

Plant Food.
Downy mildew inoculation and
disease screening

Before inoculation, one leaf from each labeled seedling was

excised and stored for DNA extraction. Seedlings in trays were

inoculated following the standard whole plant inoculation

method (Feng et al., 2018b; Bhattarai et al., 2020b). Briefly, the

inoculation assay involves growing plants for two weeks in the

greenhouse. Fresh inoculums were prepared every week on

susceptible cultivar Viroflay, conidia were washed off from the

infected leaves in the cold (4°C) distilled water, and spore

suspension diluted to 105 spores per ml was used to inoculate

using a Badger basic spray gun (model 250) until the leaves were

wet. Inoculated plants in trays were incubated in a dew chamber
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(18°C) for 24 h in the dark, moved to a growth chamber (18°C,

12 h dark-light cycle) for five days, and finally returned to the

dew chamber (18°C) for 24 h to induce sporulation. The disease

reactions of each plant were rated seven days post inoculation

(dpi) based on the presence and absence of sporulation on

cotyledons and true leaves on a scale of 0 to 4, with 0 = no

sporulation; 1 = up to 25% leaf area with sporulation; 2 = 26 to

50% leaf area with sporulation; 3 = 51 to 75% leaf area with

sporulation; and 4 = 76 to 100% leaf area with sporulation

(Figure 1). A plant was scored qualitatively as “resistant” if both

cotyledons and leaves showed no sporulation, otherwise scored

as “susceptible.” Plants were re-inoculated and kept in the

growth chamber and dew chamber for an additional week, and

the disease was re-scored for a second time to minimize the

phenotyping error as downy mildew disease was evaluated based

on the reaction of a single plant. In addition, resistant plant in

the vicinity of diseased plants was genotyped, while multiple

resistant plants in the tray-row were excluded to help increase

the confidence of single plant-based disease response.
Sequencing and marker discovery

Genomic DNA was extracted with Omega MagBind Plant

DNA DS kit (Omega Bio-tek Inc., Norcross, GA, USA) in an

automated KingFisher Flex extraction system (Thermo Fisher
Frontiers in Plant Science 04
Scientific, Waltham, MA, USA). Extracted DNA was quantified

using a Qubit Fluorometer, sample integrity was tested on 1%

agarose gel electrophoresis, and DNA meeting the requirements

were submitted for sequencing at the Texas A&M

genomics facility.

The whole genome resequencing (WGR) was pursued to

generate around 1 Gb sequence reads per sample, approximating

1x genome coverage. Variants were called by mapping the

sequence reads to the Monoe-Viroflay reference genome (Cai

et al., 2021) using the Illumina Dynamic Read Analysis for

GENomics (DRAGEN) pipeline (v 3.8.4). SNP variants were

initially filtered using BCFtools (Li, 2011) for a minimum

coverage depth of 3, minimum genotype quality (GQ) < 9,

minor allele frequency (MAF) < 0.05, and missing rate > 75%

were removed. The datasets were imputed using Beagle 4.1

(Browning and Browning, 2016), and imputed calls with

genotype probability < 0.9 were removed.

Next, SNPs from six chromosomes were extracted and

further filtered using BCFtools (Li, 2011) to remove

monomorphic SNPs, keep only biallelic SNPs, and remove

indels and SNPs within ten bp of indels. The SNP data were

filtered for over 25% of missing calls using BCFtools,

heterozygosity > 30%, and allele < 5%. Finally, removing SNP

with no polymorphism between Whale and Viroflay retained a

filtered 8,189 high-quality SNPs for downstream analysis.

Similar parameters were used to map the sequencing reads to
B

C

D

A

FIGURE 1

Signs and symptoms in spinach plant infested with downy mildew pathogen. Disease reactions of each plant are rated seven days post
inoculation (dpi) based on the presence and absence of sporulation on cotyledons (A) and true leaves on a scale of 0 to 4, with 0 = no
sporulation; 1 = up to 25% leaf area with sporulation; 2 = 26 to 50% leaf area with sporulation; 3 = 51 to 75% leaf area with sporulation; and
4 = 76 to 100% leaf area with sporulation (B). Progeny populations are inoculated in a tray (C) and are scored for disease reaction (D) based on
sporulation in leaf and cotyledons.
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the SP75 reference assembly (Xu et al., 2017), and filtering

resulted in a set of 13,476 SNPs that were also used for

GWAS analysis.
Population structure and clustering

Genetic diversity and principal component analysis (PCA)

were performed using the 8189 SNPs in GAPIT3 (Lipka et al.,

2012; Wang and Zhang, 2021) programs by setting PCA and NJ

tree =2. An unweighted neighbor-joining (NJ) tree and PCA plot

were drawn in GAPIT3. The PCA was also performed in

TASSEL (Bradbury et al., 2007) and GENESIS (Gogarten et al.,

2019) programs to use as a covariate for GWAS.
Genome wide association analysis for
RPF3 locus

Initial GWAS analysis was performed using single marker

regression (SMR), general linear model (GLM) with two PCA

matrices, and mixed linear model (MLM), including in-built

kinship and PCA matrices in TASSEL 5.2.82 (Bradbury et al.,

2007). A second association analysis was performed using the

GLM, MLM, and MLMM models in the GAPIT3 R package

(Lipka et al., 2012; Wang and Zhang, 2021). A final GWAS was

run using the logistic mixed model (LMM) by incorporating

inbuilt PCAs and kinship matrices in the GENESIS R

Bioconductor package (Gogarten et al., 2019). The TASSEL

and GAPIT3 models are more suitable for quantitative

phenotype, while the GENESIS model explicitly handles the

qualitative phenotype of two classes with case/presence and

control/absence response. Downy mildew disease score was

changed to 1 for resistant and 9 for the susceptible response as

phenotype dataset in TASSEL and GAPIT3, while the score of 0

for resistant and 1 for susceptible was in the GENESIS program.

Manhattan plots and QQplots for all association models were

drawn using the CMplot package in R. Bonferroni significance

threshold (0.05/n) of 5.21 is suggested to control false-positives,

but we only considered LOD value > 6.0 to report marker

associations in this study. In addition, genome wide SNP data

generated by mapping to SP75 reference assembly (Xu et al.,

2017) was used for GWAS analysis using all ten models.
Candidate gene identification

Significantly associated SNPs identified from multiple

association models and programs were used to search for

candidate genes up to 20 Kb on either side of the Monoe-

Virofaly genome assembly. Genes near the peak associated SNPs

were examined for annotated functions. Genes predicted to

provide disease resistance against plant pathogens were
Frontiers in Plant Science 05
considered potential candidate genes, and their predicted

functions were reported. In the same way, candidate genes

were searched for GWAS associated SNPs based on the Sp75

assembly (Xu et al., 2017).
Genomic selection

Prediction performance of resistance to downy mildew

pathogen in this population was explored using five different

machine learning methods: ridge regression best linear unbiased

prediction (rrBLUP), Bayesian models Bayes B, Bayesian

LASSO, and Bayesian ridge regression (BRR), and support

vector machine (SVM). The SVM model was included as it is

more suitable for non-linear data fitting, while other models are

more suitable for linear functions. The rrBLUP was fitted using

the rrBLUP R package (Endelman, 2011), the Bayesian models

using the BGLR R package with 3000 iterations and 1000 burn-

in (Pérez and De Los Campos, 2014), and the SVM model

implemented in a kernlab R package (Karatzoglou et al., 2004).

GPwas performed following a five-fold cross-validation scheme

where individuals are randomly assigned into five groups, retaining

four groups as the training set (80% of individuals) and the

remaining fifth group (20% of individuals) serving as the

validation set to predict genomic estimated breeding values

(GEBV). The cross-validations were replicated 100 times and

prediction accuracy (PA) was determined by averaging the

Pearson correlation coefficient (r) between predicted GEBV values

obtained from five-fold cross-validations and observed phenotype

values in the validation set. Four sets of marker datasets were

evaluated with each of the five GP models to compare prediction

accuracies among full marker data sets and a smaller number of

trait-associated marker sets and to determine the optimum number

of markers to obtain high PA for resistance to downy mildew

pathogen. The first marker set was the full set of 8,189 SNPs based

on the Monoe-Viroflay assembly used for the GWAS analysis. The

second set contained 215 SNP markers associated with resistance

with LOD ≥ 3.0 in the SMR model in TASSEL. The third set

contained 20 SNP with LOD > 6 in all three programs (TASSEL,

GENESIS, andGAPIT3), and the fourth set contained three selected

significant SNPs.
Results

Resistance response to P. effusa race 5

The resistant parent Whale and susceptible parent Viroflay

showed expected responses with race 5 of P. effusa in all

greenhouse inoculation experiments. The F2 progeny

populations following the greenhouse inoculation show

segregation for resistance to downy mildew pathogen

(Figures 1C, D), and the disease response of the progeny panel
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is presented (Figure 2). Of the 137 seedlings of VW #10, 59 were

resistant, and 78 were susceptible, showed an excess of

susceptible seedlings, and did not fit the expected 3:1 ratio but

fit the 1:1 segregation ratio (c2 = 2.64, P= 0.10). However, of the

251 seedlings of the second population, VW #3, 179 were

resistant and 72 susceptible and fit the 3:1 segregating ratio

(c2 = 1.82, P = 0.18). The progeny populations VW #3

segregating for RPF3 locus from Whale fitted to a 3:1 expected

ratio for a single dominant gene; thus, 190 seedlings of this

progeny plus the two parents (Whale and Viroflay) were selected

for sequencing and to investigate the genetic resistance.
Sequencing and SNP discovery

In total, 183.57 Gb data containing 1,223.82 million raw

reads were generated from the Illumina sequencing with an

average of 6.37 million reads/sample and average genome

coverage of 1.07x. High-quality bases (> Q30) and excluding

duplicates and clipped bases were aligned to the spinach

reference genome (Cai et al., 2021) using the Illumina

Dynamic Read Analysis for GENomics (DRAGEN) pipeline (v

3.8.4), resulting in 127.5 GB of aligned data containing 857.08

million reads. The SNP variants were called by enabling the

variant caller option in DRAGEN. Raw SNP dataset was filtered

for minimum coverage depth of 3 (DP 3), minimum genotype

quality 9 (GQ 9) at SNP variants, minor allele frequency (MAF)

of 0.05, and SNP with missing rates > 75% using BCFtools (Li,

2011). This filtering resulted in 617,998 SNP with missing rates

of 68.01%. A total of 613,013 SNPs in six spinach chromosomes

were retained following Beagle imputation. The SNP dataset was

further filtered for monomorphic SNPs, keeping only biallelic

SNPs, missing > 25%, heterozygosity > 30%, and MAF <5%, and

removing identical genotype calls in Viroflay and Whale,

retaining a final filtered 8,189 SNPs in six spinach
Frontiers in Plant Science 06
chromosomes. Additionally, SNPs calls using the SP75

reference assembly using the same parameters used for the

Monoe-Viroflay discussed above were used for GWAS analysis

in all ten models. The associated SNPs identified in this study

with the SNP dataset based on the two reference assemblies

were compared.
Population structure and principal
component analysis

Spinach lines in this panel were differentiated into two main

subpopulations in the NJ dendrogram and PCA plot generated

by the GAPIT3 program (Supplementary Figure 1). The first two

internally computed principal components were used as fixed

effect covariates in all three GWAS programs, TASSEL, GAPIT3,

and GENESIS.
GWAS of RFP3 resistance locus

Association analysis was initially conducted to map the RPF3

loci using 8,189 SNPs generated via whole genome shallow

resequencing of a panel of 192 spinach lines based on the

Monoe-Viroflay assembly. Different models were run on three

GWAS programs to determine consistent associations. Several

markers with a LOD value > 6.0 were identified across the tested

models (Figure 3A) and the QQ plots show a wide divergence of

observed P-values compared to that of expected P-values

(Supplementary Figure 2). TASSEL program detected 35 SNP

markers associated with LOD > 6.0 in the SMR model, 34 in the

GLM model, and 16 in the MLM model. A total of 37 SNP

markers were associated with LOD > 6 in one of the three

models in the TASSEL program. Next, association analysis was

performed in the GAPIT3 program and identified 38 SNPs in
FIGURE 2

Disease response of the F2 progeny segregating from a cross of Viroflay x Whale inoculated with race 5 of P. effusa in the greenhouse
condition. Whale is the resistant parent, and Viroflay is susceptible to all known races of downy mildew pathogens (P. effusa). The number of
resistant and susceptible seedlings in all tested progeny populations is noted.
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GLM, 13 in MLM, 2 in MLMM, 29 in SUPER, 3 in FarmCPU,

and 1 in BLINK models. There were 38 SNPs associated with

LOD > 6.0 in at least one of the GAPIT models. Finally, a logistic

mixed model in the GENESIS R package that uses the in-built

genetic relatedness matrix and principal components identified

20 SNP significantly associated markers with LOD > 6.0. All 20

SNP markers identified in the GENESIS program were detected

by SMR and GLM models in TASSEL and at least in GLM and

SUPER models in GAPIT. Of the total significant SNPs

identified by different models and programs, 42 SNP showed

LOD of > 6.0 in at least one of the three programs. Similarly, 20

SNPs showed substantial significance with LOD > 6 in

GENESIS, plus two or more models of TASSEL and GAPIT,

showing consistency, and are reported in detail as RPF3 locus-

associated SNPs (Table 1 and Figure 4A). Of these 20 significant
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SNPs, two SNPs, Chr3_1253998 and Chr3_1254008, are

localized in the 1.25 Mb region of chromosome 3, and all

others remained in the 2.73-2.74 Mb region of Chromosome 3

(Figure 4A). The phenotypic variance (R2) explained by the SNP

loci associated with resistance to downy mildew pathogen in the

SMR model ranged from a minimum of 0.30 for Chr3_2737221

and was 0.57 for Chr3_1253998 and Chr3_125400820. The

GENESIS model showed phenotypic variance explained by

these 20 markers in the range of 0.19-0.40 and from 0.23-0.35

in the GAPIT GLM models (Table 1).

In addition, GWAS analysis was performed with the 13,476

SNPs called on the same panel using the Sp75 genome assembly

(Figure 3B). Seventeen SNPs were significantly associated with

the RPF3 locus with a LOD value greater than 10 in the

GENESIS model and between 16 to 30 in the TASSEL GLM
B

A

FIGURE 3

Manhattan plots of resistance to P. effusa race 5 in population segregating from Viroflay and Whale. GWAS were run with single marker
regression (T.SMR), general linear model (T.GLM), mixed linear model (T.MLM), logistic mixed model (LMM) in GENESIS, and different GAPIT
models as GLM, MLM, MLMM, SUPER, FarmCPU, and BLINK. The horizontal and vertical axis represents the genomic position of the SNP and
association power for each SNP with the trait expressed as -log10(P-value). GWAS analysis was performed with SNPs called using the Monoe-
Viroflay assembly (A) and Sp75 assembly (B).
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TABLE 1 List of SNP markers significantly associated with P. effusa race 5 resistance in spinach population segregating for RPF3 resistance from Whale.

SNP Chr Position Alleles MAF LOD (-log10P) value R2

Mean LOD
value

BLINK SMR GLM.R GENESIS

9.99 12.82 16.28 56.75 35.31 39.98

0.41 0.20 12.37 56.65 34.69 39.00

1.30 0.62 8.25 38.95 25.01 21.53

0.45 0.31 7.24 34.07 22.92 18.74

1.22 0.85 8.73 38.13 26.32 25.01

0.63 0.23 8.18 35.62 24.76 24.90

0.24 0.31 7.90 33.84 24.34 24.13

0.43 0.32 7.49 30.00 24.02 21.26

0.98 0.98 9.45 46.70 28.46 29.08

1.34 0.97 9.31 37.68 28.52 26.86

1.79 0.59 8.86 41.47 28.23 26.31

1.02 0.80 9.33 36.52 29.68 25.52

11.99 4.56 12.12 45.54 32.04 31.16

2.87 0.59 9.43 40.61 29.75 23.73

1.54 0.08 9.19 44.66 25.58 27.53

3.72 4.66 9.22 35.16 29.08 27.01

4.22 0.81 9.06 36.52 30.22 26.14

3.49 0.98 8.65 36.06 28.79 26.12

3.50 0.77 8.60 36.31 28.48 26.41

3.47 1.06 10.80 38.26 29.00 25.98

1.70 1.34 11.23 0.59 35.67 0.42

2.05 0.41 11.42 0.54 36.69 0.43

1.88 0.17 8.70 0.46 33.79 0.40

2.29 0.77 13.07 0.61 39.99 0.45

2.67 5.36 12.90 0.60 41.71 0.49

2.09 0.14 10.64 0.57 38.06 0.45

0.64 0.12 7.29 0.36 31.10 0.40

1.11 0.19 9.15 0.43 35.05 0.47

2.10 3.56 11.12 0.49 39.04 0.52
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GWAS analysis using SNP markers called upon Monoe-Viroflay assembly

Chr3_1253998 3 1253998 G/T 0.45 26.39 23.93 12.73 12.08 13.96 11.18 15.17 24.52

Chr3_1254008 3 1254008 G/T 0.45 26.14 23.12 12.72 11.81 13.76 11.03 0.01 24.52

Chr3_2735424 3 2735424 T/A 0.26 15.96 15.83 5.47 6.82 10.52 4.99 1.40 19.56

Chr3_2736368 3 2736368 C/T 0.27 13.84 13.40 5.11 6.02 9.78 4.01 0.87 18.61

Chr3_2736465 3 2736465 T/C 0.26 16.89 16.03 6.49 7.82 10.97 5.59 1.61 19.86

Chr3_2736973 3 2736973 G/A 0.24 15.49 15.85 6.24 7.79 10.43 4.90 0.86 19.36

Chr3_2736989 3 2736989 T/C 0.25 14.62 15.27 5.83 7.57 10.28 4.63 0.90 19.32

Chr3_2737221 3 2737221 A/G 0.24 12.86 13.49 5.68 6.75 10.17 5.45 1.21 18.57

Chr3_2737270 3 2737270 G/A 0.32 19.40 20.37 7.84 8.99 11.71 6.70 2.69 14.80

Chr3_2737288 3 2737288 T/C 0.23 16.94 17.04 7.32 8.35 11.72 6.95 2.30 20.18

Chr3_2738051 3 2738051 T/G 0.30 17.91 17.95 7.05 8.20 11.63 6.48 2.26 14.79

Chr3_2738114 3 2738114 G/A 0.24 16.58 16.72 6.54 7.97 12.12 6.90 2.21 22.43

Chr3_2738382 3 2738382 A/G 0.29 20.45 20.83 8.30 9.58 12.90 7.22 3.05 22.33

Chr3_2739015 3 2739015 G/A 0.24 17.77 17.23 6.49 7.45 12.14 6.40 1.91 21.49

Chr3_2741024 3 2741024 A/G 0.26 19.40 18.43 7.92 8.54 10.72 5.51 0.47 19.31

Chr3_2741123 3 2741123 C/G 0.23 16.18 16.65 7.20 8.40 11.91 6.87 0.73 15.92

Chr3_2741149 3 2741149 C/T 0.22 16.77 17.09 7.24 8.15 12.30 6.89 0.96 16.12

Chr3_2741203 3 2741203 A/G 0.22 16.32 16.82 6.73 8.14 11.82 6.40 0.50 15.30

Chr3_2741229 3 2741229 G/A 0.22 16.46 16.65 7.10 8.22 11.71 6.45 0.06 15.07

Chr3_2741241 3 2741241 G/T 0.22 17.17 17.41 7.31 8.10 11.89 6.75 13.76 21.08

GWAS analysis using SNP markers called upon Sp75 assembly

Chr3_1192667 3 1192667 A/T 0.38 27.18 25.24 16.13 10.60 14.45 8.86 4.91 1.94

Chr3_1192826 3 1192826 C/G 0.41 26.12 24.85 24.41 10.87 14.78 8.91 0.29 1.52

Chr3_1193578 3 1193578 T/C 0.41 21.38 20.08 10.12 10.07 13.83 8.25 0.31 0.91

Chr3_1194293 3 1194293 C/T 0.37 30.92 28.62 27.86 11.21 15.84 10.50 0.65 2.05

Chr3_1194847 3 1194847 T/G 0.40 31.21 28.78 18.05 12.26 16.37 11.14 1.88 1.32

Chr3_1195703 3 1195703 C/T 0.44 26.45 24.36 14.33 11.28 15.22 9.43 1.46 1.61

Chr3_1222338 3 1222338 A/C 0.46 16.37 16.72 7.59 10.09 12.93 6.74 1.13 0.61

Chr3_1222475 3 1222475 C/G 0.49 20.47 21.21 11.88 11.73 14.25 8.46 1.02 1.19

Chr3_1222554 3 1222554 C/A 0.49 23.66 25.04 13.90 12.89 15.54 9.70 2.60 2.18
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model (Table 1 and Figure 4B). Of the 17 SNPs, 11 SNPs had a

mean LOD value > 10.0 among the ten tested models. The 17

SNPs fall into five major regions at 1.19, 1.22, 1.23, 1.75, and 1.76

Mb of Sp75 chromosome 3. The phenotypic variance (R2)

explained by these SNPs in the SMR model ranged from 0.36

for SNP marker Chr3_1222338 to 0.63 for SNP marker

Chr3_1239348, while the R2 value for the same SNP was 0.40

and 0.57 in GENESIS model (Table 1).
Candidate gene analysis

Twenty SNPs associated consistently in more than one

model in each of the three GWAS programs were used to

search for genes in the reference assembly, particularly to

identify genes involved in disease resistance. The P. effusa race

5 resistance region in two regions of chromosome 3 mapped

from the progeny population segregating from a cross of

Viroflay and Whale, at 1.25 Mb and 2.73-2.74 Mb, harbor four

genes within 20 Kb (Table 2). The 1.25 Mb region of the spinach

chromosome 3 harbors genes SOV3g001240, SOV3g001250,

and SOV3g001260 within 10 Kb of the peak SNPs. Gene

SOV3g001250 is an NBS-LRR gene that encodes disease

resistance protein and is 0.9 Kb from the two resistance-

associated SNPs, Chr3_1253998 and Chr3_125400, in this

study. The SOV3g001240 is annotated as an unknown protein

and the SOV3g001260 is annotated as Protein transport protein

Sec24-like. The other RPF3 resistance-associated region at 2.73-

2.74 Mb contains gene SOV3g002680 within 11.5 Kb, which is

annotated as the Pectin acetylesterase gene. Furthermore,

GWAS analysis and candidate search based on the Sp75

assembly found seventeen genes within 5, 10, and 20 Kb

distance of the RPF3-associated SNPs (Supplementary Table

S1). Of those, the SNPs in the 1.22-1.23 Mb region of Sp75

associated with RPF3 resistance were within 2.41-3.65 Kb of the

gene Spo12821 annotated as CC-NBS-LRR disease resistance

protein. And the SNP Chr3_1239348 is located at 4.83 Kb of the

gene Spo12919, which encodes RAR1 protein, which is required

for NBS-LRR protein accumulation and signaling in arabidopsis

and contributes to resistance to plant pathogen (Cai et al., 2021).
Genomic selection

The resistance to race 5 of P. effusa segregating from Whale

and Viroflay was evaluated for prediction performance using a

five-fold cross-validation approach (80% samples in the training

population and the remaining 20% samples used for predicting

breeding values) in five GS models. Average PA from 100 runs

ranged from 0.42-0.66 among five different models in the full

SNP dataset, with Bayesian B providing the highest prediction

accuracy of 0.66 and the lowest standard deviation (Figure 5 and

Table 3). The other tested GP models, Bayesian LASSO, BRR,
T
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and SVM were similar in PA in a range of 0.42 to 0.43, while

rrBLUP provided a PA of 0.56.

In addition, prediction performance was tested in three

smaller sets of markers comprising 215, 20, and 3 GWAS-

associated SNPs to identify smaller sets of markers providing

comparable PA to that of the entire marker set. The PA

increased swiftly when a smaller number of GWAS-associated

SNPs were used in all GP models; interestingly, a reduced

number of GWAS-associated markers yielded higher PA as the

three SNPs provided similar PA for all models obtained from 20

and 215 SNP markers. The average PA did not differ much

across GS models when GP was performed using 215 SNPs (PA

ranging between 0.72 to 0.77). Similar was the case with a

minimum difference in mean PA across models with 20 SNP
Frontiers in Plant Science 10
(PA in the range of 0.72 to 0.76) and 3 SNP sets (PA in the range

of 0.73 to 0.75). It is important to note that the PA obtained

using only three SNPs was equivalent to that of the 215 SNP set

that provided the highest PA in this study. For the 3 SNP set,

SVM was highest with PA of 0.75 ± 0.11, rrBLUP ranked second

with PA of 0.74 ± 0.07, and the three Bayesian models ranked

third with equal PA of 0.73 ± 0.07, making the SVM and rrBLUP

the model of choice when in predicting downy mildew with a

smaller number of markers. However, looking at the average PA

of all four SNP sets, the Bayesian B model best predicted the

downy mildew resistance in this population with a PA of 0.71, as

other models averaged between 0.66-0.69. The PA obtained from

three SNP markers appears to be a cost-effective approach and

could facilitate predicting resistance to the RPF3 locus.
B

A

FIGURE 4

Regional association plot of RPF3 resistance loci in spinach chromosome 3 between 0.5 to 3.0 Mb. The spinach breeding population
segregating from a cross of Viroflay and Whale was inoculated with race 5 of P. effusa and was used for association analysis. The horizontal and
vertical axis represents the genomic position of the SNP and association power for each SNP with the trait expressed as -log10(P-value). GWAS
analysis was performed with SNPs called using the Monoe-Viroflay assembly (A) and Sp75 assembly (B).
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Discussion

Downy mildew is the major disease in commercial spinach

production worldwide and in the United States, as the infected

leaves are unmarketable. Spinach hybrid cultivars combining

RPF alleles effective against multiple races of P. effusa from two

parents are available (Correll et al., 2011; Bhattarai and Shi,

2021). However, new races of downy mildew pathogens are

emerging and are overcoming the genetic resistance deployed in

the new cultivars. Thus, there is an urgent need to investigate

host-pathogen interaction by identifying and mapping more

unique resistance sources and testing the functionality of the

RPF genes to develop stable resistant cultivars against all known

downy mildew races. Identifying tightly linked markers for each

RPF locus against all races of P. effusa will enhance the efficiency

and precision of molecular selection and expedite cultivar

development. Cross population segregating for RPF3 resistance

locus from cultivar Whale was phenotyped for resistance against

race 5 of P. effusa in this study. The F2 progenies generated from

a cross between two inbreds, Whale and Viroflay, fit the 3:1

segregation ratio expected for traits governed by a dominant

allele at a locus. Spinach is largely a dioecious crop with separate

male and female plants, although some are monoecious
Frontiers in Plant Science 11
(Morelock and Correll, 2007). The parent lines used in the

crosses are often family pools of heterozygous genotypes making

the linkage and QTL analysis more difficult in spinach (Bhattarai

et al., 2020b). However, the GWAS approach allows us to map

the trait in a mixed population or when there is a lack of fit of

markers segregation for QTL mapping, as performed in this and

previous spinach-downy mildew resistance mapping efforts

(Bhattarai et al., 2020b; Bhattarai et al., 2021).

Low coverage sequencing (~1x), as pursued in this study to

genotype the population panel, leads to high missing data

(Malmberg et al., 2018). High missing data points are then

imputed to infer missing genotype data based on haplotype

information to increase marker density for downstream

applications. The other important issue with low coverage

sequencing is that heterozygotes genotypes are called

homozygous, and such erroneous genotype calls primarily

affect highly heterozygous species like spinach. We attempted

to filter the imputed genotype calls by discarding the genotype

call with a genotype probability (GP) value less than 0.90 to

increase the accuracy of imputed genotype calls.

The phenotype and genotype data of the segregating

population were used to map the resistance region by

employing three GWAS programs to identify consistent sets of
TABLE 2 List of genes and gene functions located within 20 Kb distance from 20 GWAS associated SNP markers.

GWAS associated SNP Gene description (Monoe-Viroflay annotation) Distance from gene (Kb)

SNP Chr Position Gene ID Start End Annotation Start End

Chr3_1253998 3 1253998 SOV3g001240 1237095 1244412 Unknown protein 16.903 9.586

1253998 SOV3g001250 1246993 1253083 putative disease resistance protein 7.005 0.915

1253998 SOV3g001260 1253496 1272509 Protein transport protein Sec24-like 0.502 18.511

Chr3_1254008 3 1254008 SOV3g001240 1237095 1244412 Unknown protein 16.913 9.596

1254008 SOV3g001250 1246993 1253083 putative disease resistance protein 7.015 0.925

1254008 SOV3g001260 1253496 1272509 Protein transport protein Sec24-like 0.512 18.501

Chr3_2735424 3 2735424 SOV3g002680 2722152 2752759 Pectin acetylesterase 13.272 17.335

Chr3_2736368 3 2736368 SOV3g002680 2722152 2752759 Pectin acetylesterase 14.216 16.391

Chr3_2736465 3 2736465 SOV3g002680 2722152 2752759 Pectin acetylesterase 14.313 16.294

Chr3_2736973 3 2736973 SOV3g002680 2722152 2752759 Pectin acetylesterase 14.821 15.786

Chr3_2736989 3 2736989 SOV3g002680 2722152 2752759 Pectin acetylesterase 14.837 15.77

Chr3_2737221 3 2737221 SOV3g002680 2722152 2752759 Pectin acetylesterase 15.069 15.538

Chr3_2737270 3 2737270 SOV3g002680 2722152 2752759 Pectin acetylesterase 15.118 15.489

Chr3_2737288 3 2737288 SOV3g002680 2722152 2752759 Pectin acetylesterase 15.136 15.471

Chr3_2738051 3 2738051 SOV3g002680 2722152 2752759 Pectin acetylesterase 15.899 14.708

Chr3_2738114 3 2738114 SOV3g002680 2722152 2752759 Pectin acetylesterase 15.962 14.645

Chr3_2738382 3 2738382 SOV3g002680 2722152 2752759 Pectin acetylesterase 16.23 14.377

Chr3_2739015 3 2739015 SOV3g002680 2722152 2752759 Pectin acetylesterase 16.863 13.744

Chr3_2741024 3 2741024 SOV3g002680 2722152 2752759 Pectin acetylesterase 18.872 11.735

Chr3_2741123 3 2741123 SOV3g002680 2722152 2752759 Pectin acetylesterase 18.971 11.636

Chr3_2741149 3 2741149 SOV3g002680 2722152 2752759 Pectin acetylesterase 18.997 11.61

Chr3_2741203 3 2741203 SOV3g002680 2722152 2752759 Pectin acetylesterase 19.051 11.556

Chr3_2741229 3 2741229 SOV3g002680 2722152 2752759 Pectin acetylesterase 19.077 11.53

Chr3_2741241 3 2741241 SOV3g002680 2722152 2752759 Pectin acetylesterase 19.089 11.518
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significant SNPs. Association analysis employed in multiple

models in this study mapped the RPF3 locus to a narrow

region, in 1.25 Mb and 2.72 Mb of chromosome 3 (Table 1).

Significant SNPs detected on multiple programs and association

models were reported to associate with resistance to race 5 of P.

effusa. The GENESIS logistic mixed model that incorporates

models for binary phenotypes captured many SNPs detected by

SMR and GLM in TASSEL and the GLM and SUPER models in

GAPIT, making the association result more valid. Indeed, several

SNP markers were associated in the two regions, increasing the

confidence of this mapping result. This study employed ten

GWAS models that reveal variable association results and a lack

of constant hits across the models (Table 1), mainly when

modeling for the qualitative or binary response variables. It is

thus important to correctly evaluate the results from multiple

GWAS models with varying functions and algorithms during
Frontiers in Plant Science frontiersin.12
GWAS analysis. The multi-locus GWAS models (MLMM,

FarmCPU, and BLINK) narrowed to a few significant SNP hits

but are missing other equally important markers and cannot be

relied upon just based on these models. The SMR and GLM

models in TASSEL and GAPIT programs identify more

associated markers and appear to fit the downy mildew

pathogen resistance phenotypes. The LMM model used in the

GENESIS program identifies the markers also identified by the

GLM models in TASSEL and GAPIT, making the GENESIS

LMM model a better choice for GWAS analysis of qualitative

disease phenotypes.

Resistance to downy mildew pathogen in spinach is

hypothesized to be governed mainly by a major gene with a

substantial effect on phenotype. The R2 values for the 20 SNP

markers associated with the race 5 resistance averaged 40% and

were 57% for the two SNPs at 1.25 Mb. This high R2 value, as
FIGURE 5

Prediction accuracy (PA) is measured as correlation (r-value) from 100 genomic predictions (GP) runs for P. effusa race 5 resistance. The
population panels were evaluated for PA using five GP models, including rrBLUP, BL, BB, BRR, and SVM, and four marker sets comprising
8189, 215, 20, and 3 SNP markers.
TABLE 3 Genomic prediction (r-value) was evaluated with five genomic predictions (GP) models for P. effusa race 5 resistance with four marker datasets.

GP model rrBLUP BL BB BRR SVM Average (All GP model)

8189 mean 0.56 0.43 0.66 0.42 0.43 0.50

sd 0.12 0.12 0.08 0.14 0.15

215 mean 0.72 0.77 0.76 0.75 0.75 0.75

sd 0.07 0.06 0.06 0.07 0.08

20 mean 0.72 0.72 0.72 0.73 0.76 0.73

sd 0.08 0.07 0.07 0.07 0.09

3 mean 0.74 0.73 0.73 0.73 0.75 0.74

sd 0.07 0.07 0.07 0.07 0.11

Average (SNP set) 0.69 0.66 0.71 0.66 0.67 0.68
Five different genomic selection (GS) models were evaluated for prediction accuracy using the complete SNP set comprising 8189 SNPs and three small sets of GWAS-associated SNPs.
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expected for major locus, suggests the effectiveness of trait

control. These results provide SNP markers explaining high

phenotypic variance and close to the disease resistance candidate

genes that will help in the efficient and effective deployment of

the favorable resistance alleles. The GWAS analysis performed

using the SNP marker dataset based on Sp75 assembly identified

17 associated SNPs in 1.19, 1.22, 1.23, 1.75, and 1.76 Mb of

chromosome 3. GWAS performed with Monoe-Viroflay

assembly maps the RPF3 locus to the 1.25 Mb region

coinciding with the major GWAS associated regions based on

the Sp75 assembly at 1.19, 1.22, and 1.23 Mb. However, the 2.72

Mb region associated with the RPF3 locus with the Monoe-

Viroflay assembly was not observed with the Sp75 assembly.

Instead, the Sp75 showed a second major QTL for the RPF3

locus at 1.75-1.76 Mb making these two regions (2.72 Mb on

Monoe-Viroflay and 1.75-1.76 Mb on Sp75) unique to associate

with the RPF3 resistance locus.

Association analysis in this study mapped the RPF resistance

loci against downy mildew pathogen in spinach in the same

region as previous studies (Feng et al., 2018a; Bhattarai et al.,

2020b; Bhattarai et al., 2021). The RPF1 locus segregating in

progeny population from multiple parental crosses inoculated

with P. effusa race 13 was mapped to 0.32-0.47, 0.69, 0.94-0.98,

and 1.19-1.26 Mb region of chromosome 3 in Sp75 assembly

(Bhattarai et al., 2020b). The RPF3 locus fromWhale segregating

for P. effusa race 16 was mapped using GBSmarkers to a 0.57 Mb

interval of chromosome 3 of the Sp75 assembly in the 0.65, 0.69,

1.10, and 1.22-1.23 Mb region (Bhattarai et al., 2021). This study

further confined the RPF3 locus to a narrow region between

1.22-1.23 Mb of Sp75 assembly. The GWAS analysis of

resistance to downy mildew pathogen under natural inoculum

pressure in the field also identified resistance-associated SNP

markers at 0.94, 1.06, and 1.16 Mb regions of chromosome 3

(Bhattarai et al., 2022), supporting the presence of downy

mildew QTLs in the region even for the field tolerance.

The high-confident SNPs identified from the GWAS

analyses employing ten models (3 in TASSEL, 6 in GAPIT3,

and 1 in GENESIS) were explored for the presence of disease

resistance candidate genes near the associated regions (Table 2).

The proximal end of chromosome 3 contains several other

annotated disease resistance genes, including six NBS-LRR

genes within 0.6-1.3 Mb and the markers for the RPF1, RPF2,

and RPF3 fall in the same region (Irish et al., 2008; Feng et al.,

2018a; Bhattarai et al., 2020b; Bhattarai et al., 2021). This study

identified a major SNP in the 1.25 Mb region of Chromosome 3

associated with RPF3 loci lying near the disease resistance

candidate gene SOV3g001250 contributing 57% of the

phenotypic variance. The SOV3g001250 gene was reported as

the potential candidate gene contributing to downy mildew

resistance following GWAS analysis in a panel of more than

300 wild and cultivated accessions (Cai et al., 2021). Similarly,

GWAS analysis with the SNPs based on Sp75 assembly mapped

the RPF3 locus mainly on the 1.22-1.23 Mb region of
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Chromosome 3 was 2.41-3.65 Kb of the gene Spo12821

annotated to encode CC-NBS-LRR disease resistance protein.

Another major QTL located at 2.73 to 2.74 Mb of Chromosome

3 was 11.5 Kb of the Pectin acetylesterase gene, and this unique

region showing association with resistance to P. effusa will be a

new target to look for their functions in providing resistance to

downy mildew pathogen. The NBS-LRR is the most common

plant disease resistance gene that acts as a receptor of pathogen

effectors to activate the signaling cascades for defense (Jones and

Dangl, 2006), and these genes reported here are now the targets

for validation and functional studies of downy mildew resistance

via gene knockout and gene-expression experiments. The

spinach downy mildew resistant locus RPF1 through RPF6 has

been established and is being sought to characterize at the

genetic and functional level. Efforts have been made to

discover and describe the major and minor downy mildew

resistance genes to combat the rapidly evolving new virulent

races. Detailed genetic characterization of the resistance genes

opens options to use molecular markers to select superior

genotypes with an increased selection efficiency in terms of

time and precision. Integrating molecular markers to deploy

the resistant alleles during cultivar development are expected to

shorten the breeding cycle. On the other hand, functional

characterization of the R genes elucidates the genetic and

operating mechanism of host-pathogen interaction, disease

establishment, and pathogen strategies to overcome the

available resistances. Such an advanced understanding of host-

pathogen interaction at the molecular level will help formulate

new ways to add genetic resistance to cultivar development.

The objective was to compare multiple machine learning

models and the influence of a different set of markers in the

prediction performance of downy mildew race-specific

resistance in spinach. GS has recently been evaluated in

spinach for resistance to white rust (Shi et al., 2022), field

evaluated downy mildew (Bhattarai et al., 2022), while some

other phenotypes are being assessed for GP in spinach (Bhattarai

and Shi, 2021). Five GP models involving parametric models

(rrBLUP, BB, BL, and BRR) and nonparametric models (SVM)

in four marker datasets provide a comparative advantage

between models and marker sets. The GS prediction models

have different assumptions to treat marker effects, so the PA

differs based on the phenotype and genetic architecture of the

trait; however, there was not much difference in PA among the

GS models. The Bayesian B model showed consistently higher

PA in all marker datasets. The rrBLUP was superior in PA to

SVM, BL, and BRR in the full dataset, but the smaller dataset of

215, 20, and 3 markers showed little difference in PA among the

models. Bayesian models are known to provide higher PA for

traits controlled by a few major QTLs with large effects

(Daetwyler et al., 2010). The rrBLUP considers equal variances

of all markers and incorporates genetic relationships, and low

PA was reported for some traits, including field resistance to

downy mildew in a spinach germplasm panel (Shikha et al.,
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2017; Islam et al., 2020; Bhattarai et al., 2022). Contrarily, the PA

of Bayesian models and rrBLUP were similar for resistance to

race 5 of downy mildew with large-effect QTLs in this study. The

GWAS-associated SNP set showed improved PA for all models

compared to the full dataset. PA of the full set of 8189 SNP was

lower than the smaller GWAS-associated sets, which may be due

to the overfitting of the GS model for a large number of SNPs in

the full set, which has been reported for resistance to downy

mildew and white rust resistance in spinach (Bhattarai et al.,

2022; Shi et al., 2022) and stripe rust resistance in wheat

(Merrick et al., 2021). There was minimal difference in PA

when 3 or 20 GWAS-associated markers, notably three

markers providing equal or higher PA for most of the tested

models (increase by 0.02 for rrBlup, 0.01 for BL, BB, equal for

BRR, and decrease by 0.02 for SVM). The 20 SNP markers lie in

two RPF loci-associated regions but expand to short genomic

regions and are in high LD, and this is why the three SNP

markers provided equal or higher PA than the 20 markers. A

relatively small number of GWAS-associated markers estimated

comparable prediction to that of a larger SNP set providing an

optimized marker set for no reduction in predictive ability.

Equivalent PA obtained from a small SNP panel could attract

adoption as it minimizes the cost of genotyping and favors using

a small number of GWAS-associated SNP in GS. A commercial

cultivar containing multiple resistant genes is an attractive

option for the spinach industry as the cultivar will probably be

durably resistant. Overall, this study showed the potential of

accurately predicting and implementing GS for a major gene

using nonparametric and parametric machine learning models,

which may benefit from increased accuracy by including

additional traits for selection.
Conclusion

The RPF3 resistance loci in the cultivar Whale have

transmitted in a 3:1 ratio fitting the expected Mendelian

segregation for a trait controlled by a major dominant locus.

The RPF3 resistance regions were mapped to the 1.25 Mb and

2.73-2.74 Mb of Monoe-Viroflay chromosomes 3 based on the

significant and consistent association of 20 SNP markers across

three GWAS programs and ten models. The RPF3 locus was

mapped to 1.19, 1.22, 1.23, 1.75, and 1.76 Mb of Sp75

chromosome 3. In this study, the 1.25 Mb associated with the

RPF3 locus from cultivar Whale is 0.9 Kb from the gene

SOV3g001250, an NBS-LRR gene that encodes disease

resistance protein. The RPF3 locus in the 1.22-1.23 Mb region

of Sp75 chromosome 3 is 2.41-3.65 Kb from the gene Spo12821

annotated as CC-NBS-LRR disease resistance protein. These

genes can be targeted for functional tests of the RPF3 locus to

regulate resistance to downy mildew pathogens. This report

further presented the GS tools with the ability to use three SNP

markers to predict the RPF3 resistance locus in spinach.
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Implementing GS will be a practical and attractive option with

low-cost genotyping resources, incorporating other important

traits, and simultaneous prediction of multi-trait data may

provide increased PA. Continuous studies on genetics and

molecular aspects of qualitative and quantitative host

resistance, the evolution of pathogen races and the specificity

of virulence factors, and the molecular mechanism and

dynamics of host-pathogen interactions can provide innovative

options to improve the development of downy mildew

resistance cultivars.
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SUPPLEMENTARY FIGURE 1

Genetic diversity of the spinach population segregating from a cross of
cultivars Whale and Viroflay differentiated into two main sub-populations

based on phylogenetic trees (A) drawn by neighbor-joining (NJ) method
and the principal component analysis (PCA) plot (B) in GAPIT.

SUPPLEMENTARY FIGURE 2

QQ-plots of GWAS using different models in the TASSEL, GAPIT, and

GENESIS programs using SNPs derived from the Monoe-Viroflay
assembly. The horizontal and vertical axis represents the genomic

position of the SNP and association power for each SNP with the trait
expressed as -log10(P-value).

SUPPLEMENTARY FIGURE 3

QQ-plots of GWAS using different models in the TASSEL, GAPIT, and
GENESIS programs using SNPs derived from the Sp75 assembly. The

horizontal and vertical axis represents the genomic position of the SNP
and association power for each SNP with the trait expressed as -log10
(P-value).
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